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ABSTRACT

KEYWORDS: LTE-U ; Wi-Fi; Co-existence; Optimization; Game Theory;

ε(epsilon) Nash equilibrium ; Q-Learning.

With the increase in the number of mobile devices and the requirements for high data

rates and throughput, allocating the resources in a non-efficient manner leads to so

called "Spectrum Scarcity problem", where the limited available spectrum is not enough

to satisfy the demand. Hence, to overcome this issue, researchers have proposed the

LTE-Unlicensed, a new way of accessing the spectrum in which LTE cellular operators

are allowed to use the unlicensed bands, for instance the 5GHz ISM band. However,

intervention of LTE in the unlicensed bands may severely degrade the performance

of the networks that are already deployed, mainly Wi-Fi. To have a fair coexistence

between LTE and Wi-Fi, in this paper, we propose a model which ensures that Wi-Fi

network’s performance is not severely degraded when LTE is introduced and allowed to

use the unlicensed spectrum. We first propose a system model and then formulate an

optimization problem; we seek to derive optimal coexistence policies. We also introduce

a game theoretic view for the same and characterize the solution in terms of Nash

equilibrium policies. In addition to the traditional way of forming a system model and

solving the optimization problem, we also introduce a Q-learning problem, a model

free reinforcement learning approach. We first propose a Markov Decision based model

where the LTE and WiFi stations are modeled as M/M/1 queues. We then train the model

using Q-learning. Finally we demonstrate the efficiency of the Q-learned policy over a

few heuristic algorithms.

Though out the thesis we discuss various methods that can be applied to enhance

the coexistence between LTE-Unlicensed and Wi-Fi; the performance for each of the

model is observed. The thesis comprises 6 chapters and are organised as follows. In

Chapter 1, we introduced about the LTE-Unlicensed and discussed in detail the aim and

scope of the problem. In chapter 2 we briefly talked about various works in the literature

that are proposed till now for the fair coexistence between LTE and Wi-Fi. We also

ii



mentioned about how our model differs from the existing methods and the advantages.

Then we gave a brief overview on the works done in Q-learning on the coexistence

problem. In chapter 3, we formulated the system model, optimization framework, game

theoretic framework and solved for the respective solutions. Then, in chapter 4, we

gave an introduction to the reinforcement learning and Q-learning, developed a simple

system model and made the network train by updating the Q matrix. In chapter 5, we

discussed about the simulation set up, and the results obtained along with some important

observations. We conclude the paper with chapter 6 by giving a brief summary along

with some future works that can be done to enhance the model.
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CHAPTER 1

INTRODUCTION

1.1 Introduction to LTE Unlicensed

To cope with the increasing scarcity of spectrum resources, and demand for high data

rates and throughput, researchers have been working to extend LTE cellular systems

to unlicensed bands, leading to so-called LTE unlicensed (LTE-U). In other words,

LTE in unlicensed spectrum has been proposed to allow cellular network operators to

offload some of their data traffic by accessing the unlicensed 5 GHz frequency band.

It is not developed to replace existing LTE network-based connections but developed

to coexist with LTE and Wi-Fi networks. The main purpose is to offload the traffic

from existing LTE networks as well as traffic from existing Wi-Fi hotspots. LTE-U

would allow cellphone carriers to boost coverage in their cellular networks, by using

the unlicensed 5 GHz band already populated by Wi-Fi devices. The specifications of

LTE-U are outlined in 3GPP release-10/11/12. However, this extension is by no means

straightforward, primarily because the radio resource management schemes used by LTE

and by systems already deployed in unlicensed bands are incompatible. It is also known

that bringing up LTE in the unlicensed bands disrupts the throughput of the networks

that are already deployed in the higher frequency bands. To avoid interference, there is a

need for fair coexistence between LTE-U and Wi-Fi with a better spectrum efficiency.

Once such method to overcome the interference is dividing the time slots in a frame into

two parts for each of the LTE and Wi-Fi based on the load requirement. The figure 1.1

shown below represents an almost blank sub frame in which the D represents Data, i.e.

LTE can transmit the data where as B represents Blank, i.e. Wi-Fi has the transmission

opportunity in this time. In other words, we give some amount of time in a frame to LTE

and it will use this time for its transmissions, and the remaining time will be used by the

WI-Fi AP for its transmissions following the contention based protocols. But dividing

the time slots has to be done in such a way that both LTE and Wi-Fi coexist along with

giving a fair amount of spectrum time allocation to Wi-Fi. So, the optimal number of

https://www.3gpp.org/specifications/releases/70-release-10
https://www.3gpp.org/specifications/releases/69-release-11
https://www.3gpp.org/specifications/releases/68-release-12


slots for LTE transmission and the time for which Wi-Fi can be transmitted in a given

time should be found based on the data rates requested by the users using LTE and

Wi-Fi access points. With the advancements in artificial intelligence and deep learning

techniques, it is possible to learn the optimal number of LTE transmission slots in a given

period over time. So, we introduced a model free learning known as Q-learning to the

problem and learned the optimal air time for LTE and Wi-Fi. If this could be achievable,

both LTE-U and Wi-Fi can coexist with better deliverable speeds and data rates.

Figure 1.1: Almost blank sub-frame

1.2 Aim of the Project

Since LTE-U is being used in the unlicensed spectrum, there is a requirement to provide

fair coexistence with other technologies working in the unlicensed spectrum. Since WiFi

too operates at 5GHz, use of LTE unlicensed at 5GHz will cause interference which

one would not likely to have. So, there is a need to fairly coexist both the LTE-U and

Wi-Fi with a better spectrum efficiency. Without a properly defined fairness criterion

for spectrum sharing, Wi-Fi networks may get completely stalled if the co-located LTE

networks selfishly offload too much traffic to the unlicensed bands. So, using the concept

of almost blank sub frames, the aim is to determine the number of slots in which LTE-U

transmission can occur and the time slots for which Wi-Fi can be accessed. Also, to

verify any model free learning algorithm for example Q-learning can be applied since

the transition probabilities are not known in a partially observable Markov chain so that

no theoretical model is required to decide the optimal time slots.
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1.3 Sub problems to be addressed

1. In order to determine the number of optimal slots for LTE-U, there is a need to
detect in how much time you need to perform this detection, i.e what is the time
frame in which the decision has to be taken. Is it fixed or can it vary?

2. Also, after determining the individual air times for all the LTE’s, scheduling those
air times is also an important task.

1.4 Main Deliverables

Better allocation and utilization of spectrum, better data rates for the users of both LTE

and Wi-Fi based on their utilities.

1.5 Contributions

We formulated a System Model which is mostly similar to a a real time scenario and

obtained an optimization framework with some solid constraints for both Wi-Fi and

LTE(will be discussed in the further sections), which will provide us the optimal solution.

Using the same system model, we also gave a game theoretic view to the problem. This

comes from the idea that not all the base stations belong the same service provider, so

they end up playing a game which would maximize their own profit which might end

up in reducing the efficiency of the spectrum allocated. In addition to this work, we

also constructed a Q-learning problem based on M/M1 Queueing theory and made the

network learn the optimal time slots for LTE and Wi-Fi transmissions. With this, the

network dynamically allocates a fraction of frame time for LTE and Wi-Fi such that both

co-exist fairly.

3



CHAPTER 2

Literature Review

In this chapter we gave a brief overview on the works carried out in the coexistence

of LTE-U and Wi-Fi. Till date, there is still no widely accepted coexistence scheme to

enable spectrally-efficient and fair spectrum sharing between LTE and Wi-Fi, with the

exception of a few recent research efforts. Huawei and Qualcomm proposed to deploy

LTE-U in only partially unlicensed bands and areas with sparse Wi-Fi deployments. The

limitation of this approach is that it may lead to under utilization of spectrum resources

compared to exploiting the whole unlicensed band. The tutorial paper by Guan and

Melodia (2016) served us as a base idea for the problem. Guan and Melodia proposed

a cognitive coexistence scheme to enable spectrum sharing between LTE-U and Wi-

Fi. The scheme they designed, jointly determine dynamic channel selection, carrier

aggregation and fractional spectrum access for LTE-U networks, while guaranteeing

fair spectrum access for Wi-Fi based on a newly designed cross-technology fairness

criterion. They limited their work to coexisting both of them in a single channel giving a

minimum amount of time for Wi-Fi transmission, but didn’t work on the optimal time

for which LTE needs to transmit. In Almeida et al. (2013), the authors proposed to

enable coexistence of LTE-U and Wi-Fi by taking advantage of the so-called Almost

Blank Subframe (ABSF), a time domain multiplexing feature in 3GPP Rel. 10 [1]. The

challenge there is how to find the optimal operating point between the air time given up

by LTE and the throughput achievable by the Wi-Fi networks. Our model overcomes

this issue by proposing the optimal time for the LTE and Wi-Fi transmission.

In Cano et al. (2016), the authors discussed various benefits and coexistence issues.

Carrier aggregation, Wi-Fi scheduling, channel selection were discussed in detail. The

authors in Wang et al. (2017) conducted a survey of the coexistence of LTE and Wi-Fi in

the unlicensed spectrum .They considered various deployment scenarios and discussed

about them in detail. In Nihtilä et al. (2013), a detailed performance analysis of LTE

and Wi-Fi when co-existing on a shared channel is explained. In Ratasuk et al. (2012),

the authors proposed a listen-before-talk scheme by enabling carrier sensing at each

LTE PeNB. While the scheme can enable fair coexistence between U-LTE and Wi-Fi,



it results in spectrum under utilization because of the carrier sense operation in the

listen-before-talk. But our model does not require a listen-before-talk scheme(since we

propose to use LTE-U which does not require an LBT) and estimates the air time for

both LTE and Wi-Fi based on the required data rates. Sagari in Sagari (2014), proposed

an inter-network coordination architecture to enable dynamic interference management

between coexisting LTE-U and Wi-Fi networks. In Yun and Qiu (2015), the authors

proposed an LTE-U,Wi-Fi coexistence scheme by allowing LTE and WiFi to transmit

together and decode the interfered signals. The disadvantage of this model is the physical

layer protocol stack has to be redesigned for both LTE and Wi-Fi which may not be

practically possible.

Currently, there were no machine learning based approaches to allocate the time slots

apart from a few works. A detailed survey about various machine learning models that

can be used in Communications, mainly regarding LTE and Wi-Fi is done in Chen et al.

(2017). Using machine learning approaches for learning the number of slots allotted

for both LTE-U and Wi-Fi transmission through time is very intuitive and realizable

because the time slots will not differ much from the previous slot to the present slot and

also they depend heavily on the previous decisions. One advantage by using learning

techniques is that the time for the estimation will be very fast when compared to solving

the traditional optimization or game theoretic problems. Using Neural networks or Deep

learning techniques in any field require huge data sets for training. This may not be

possible since we may not acquire real time data sets. Along with the data sets, the

algorithm requires the ground truth to learn from the data while training. In our case

there can be no particular ground truth. In other words we are suggesting the ground

truth. So our problem becomes more of regression kind of problem rather than traditional

classification. One such way to make a network in such a condition is by using a variant

of Reinforcement learning where actions of the agent will depend on the rewards and

previous actions. In this section, we discuss various related works on the co-existence of

LTE and WiFi using various machine learning techniques, mainly the works related to

Q-learning, a model free reinforcement learning approach.

The authors in Su et al. (2018) discussed a coexistence algorithm in multi channel

case based on Q-learning. Their algorithm takes into account both the fairness and

the performance of the system while optimizing the duty cycle time. They designed

a joint utility function of the system through-put and fairness for the coexistence sce-

5
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nario, and proposed a coexistence algorithm based on Independent and Joint Q-learning

algorithm.In Abinader et al. (2014), the authors proposed the basic framework of the

cooperative coexistence algorithm,which describes the general flow of collaborative co-

existence algorithms. In Rupasinghe and Güvenç (2015), a new algorithm based on duty

cycle adaptive algorithm is proposed, which achieves the fast convergence of optimal

duty cycle by Q-learning. In another work by Su et al. (2018a), the authors proposed

an algorithm that guarantees the fairness between the two systems while improving the

system throughput. They’ve presented a system model and made use of the SINR for

calculating the throughput. They have a set of 4 predefined states which are a tuple

of throughput and fairness. Their rewards are based on the though-put obtained and a

minimum though-put set. The difference between this work and our work is that, we’ve

calculated the optimal duty cycle time even though we did not take SINR into account.

In Cano and Leith (2015) the authors proposed a fair proportion of resource allocation

algorithm in which the algorithm requires that the average channel occupancy time of

the Wi-Fi device be equal to the average channel occupancy time of the LTE-U device

to ensuring a fair coexistence between LTE-U and Wi-Fi. Recently Su et al. (2018b),

a coexistence algorithm for allocating idleslots by LTE according to a predetermined

duty cycle is proposed in a heterogeneous network. In Pedro et al. (2019), the authors

proposed a new solution "DM-CSAT" for LTE-U, Wi-Fi coexistence based on Q-learning.

They modeled the problem as a Markov decision process, and the Q-learning solution for

finding the best duty cycle time is based on the Bellman’s equation. They have evaluated

the performance of the proposed solution for different traffic load scenarios using the

ns-3 simulator.

6



CHAPTER 3

Optimization and Game Theory Frameworks

3.1 System model

System model always plays a key role in the performance of any model in commu-

nications. The way you develop your model and solve for the solution decides the

performance. So, we started with a simple case and then moved into a network similar to

a real time scenario. We took a simple case where there are only two LTE pico cell base

stations and 2 Wi-Fi access points in a network and constructed a system model while

imposing the necessary constraints and solved for the optimum solution by hard coding

the equations. Then we moved into the very general case of L LTE’s and W Wi-Fi access

points where any number of LTE’s can be connected to any number of Wi-Fi’s if they

are well inside the range of the Wi-Fi AP. Since the number of Wi-Fi’s and LTE BS’s are

variable, we cannot always hard code the utility functions and solve for the optimum,

instead we have to find a way to automate these equations. Once we have the system

model in place, we start developing the optimization problem and solve for the solution.

Below are the steps followed for framing the system model.

3.1.1 Deployment of Wi-Fi access points and LTE base stations

In a general real-time scenario, Wi-Fi AP’s and LTE BS’s are randomly present in a

defined area. So, we have deployed L LTE BS’s and W Wi-Fi AP’s randomly in a 100m*

100m square region.

3.1.2 Channel Assignment

Assigning channels or spectrum bands to radio interfaces for communication is termed

as Channel assignment. Since we are deploying AP’s randomly, we need to take care

of the channel assignment. We have to allocate each of the Wi-Fi AP’s a particular



channel to operate on. But we should keep in mind that no two adjacent Wi-Fi AP’s

should not be allocated a same channel which may result in interference. So, we have

to find the adjacency matrix of Wi-Fi AP’s which tells us which Wi-Fi AP is in the

vicinity of the other AP’s. This problem simply correlates to the well-known graph

coloring problem where you’ve to make sure that no two adjacent states in a map are

of no color. Unfortunately, there is no efficient algorithm available for coloring a graph

with minimum number of colors as the problem is a known NP Complete problem. Here

is what we did. Start by assigning the first AP to channel 1, and for each AP from AP 2

to W, check what are all the used channels for each AP based on its adjacency matrix

row, and pick any of the non-used channels randomly. If all the channels are used, assign

it a new channel. Alternatively, channel assignment can be also done by first fixing

the number of channels to which Wi-Fi AP’s are to be assigned instead of assigning a

new one once all the available ones are assigned to some channel. But deciding how

many channels to fix in the first case is also important. Even if you decide and fixed the

number of channels, there is a catch here. If the number of Wi-Fi AP’s are too high and

they are very near, i.e. suppose there is a network such that say 6 AP’s are connected

to each other(everyone in the network is connected with every other one), and you fix

the number of channels to say 4, then there is no chance of allocating all the AP’s in 4

channels. The number of channels has to be at least 6 in this case. So, there is no way

round except you have to do the channel assignment based on the procedure mentioned

above. i.e. allocating new channels if all the channels present until then are used by

some other Wi-Fi AP’s. In the next page, we discussed the channel assignment algorithm

briefly along with the pseudo code.
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Below is the crux of the algorithm implemented for channel assignment

Pseudocode 1: Channel assignment
Data: W Wi−Fi AP′s
Result: Vector of assigned channels to all AP′s

1 Initialization: channels(i) = -1 ∀ i = 1,2...W
2 A(i, j) = 0 ∀ i, j = 1,2...W
3 Intermediate: AW∗W , A is the adjacency matrix of the Wi−Fi network
4 for i=1 to W do
5 for j=1+i to W do
6 if dist btw AP’s i,j ≤ rW then
7 A(i, j) = 1

8 channels(1) = 1
9 for i=2 to W do

10 for j=1 to W do
11 if A(i,j) == 1 then
12 if channels(j) 6= -1 then
13 used(channels(j)) = 1

14 for k=W to 1 in steps of -1 do
15 if used(k) == 1 then
16 break

17 temp = used(from 1 to k)
18 mat = find(temp == 0)
19 if length(mat) == 0 then
20 ch = k+1
21 else
22 ran = a random num which takes a max value length(mat)
23 ch = mat(ran);

24 channels(i) = ch
25 re-initialize array "used" to "0"

3.1.3 Describing the system model

Let Ui be the net utility of LTE user i(i = 1,2, . . .L). Let ui be the utility functions

for LTE user i. Let c j be the cost due to presence of Wi-Fi j( j = 1,2,3. . .W ). Let

β` = (β`1,β`2, ...,β`,C) be the air time available for LT E user `, where C is the number

of frequency channels allotted. i.e. β1 = (β11,β12, . . .β1C) is the air time available

for LT E1 where β11 is the air time allocated for LT E1 when it uses Wi-Fi channel 1.

Similarly, β1C is the air time allocated for LT E1 when it uses Wi-Fi channel C. So, the

objective is to find the βL∗C matrix. Now, the net utility for user i is the difference
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between the utility of the ith LTE user and the costs due to those Wi-Fi channels to which

this particular ith LTE can be connected. So, the net utility is given by:

U`(β1,β2...βL) = u`(β1,β2...βL)−
W

∑
j=1

c j(β1,β2...βL)×ad jmat(i, j) (3.1)

where ad jmat is the adjacency matrix of the network and ad jmat(i, j)==1 if Wi-Fi AP

j is in the range of LTE i.

Another interpretation for the cost due to the Wi-Fi AP is the log utilities for the AP’s

with the time left by the LTE BS’s. So, instead of subtracting the costs we add those

utilities of those AP’s which are in the vicinity of that particular LTE.

Figure 3.1 shows a general deployment of a network consisting of 4 LTE BS and 4 Wi-Fi

AP’s

Figure 3.1: General Deployment
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The red lines in the figure 3.1 depicts that one Wi-Fi AP is well within the other AP’s

range. The black line tells that one LTE BS is with in the ragne of the ohter LTE BS.

The blue line tells that the LTE BS is with in the range of the WI-Fi AP and hence can

use the chanel used by the AP for a fractional amount of time.

3.2 Optimization framework

Once we have the system model in place, we can start optimizing our network to find

the solution. In our case the objective is simple,i.e. to maximize the sum payoff(net

utility) of the all the L LTE Pico Base stations by giving fair amount of time for Wi-Fi.

But we have to define the constraints before trying to maximize net utility. We have

derived mainly 3 group of constraints given any network, the Wi-Fi constraints, the LTE

constraints(will be discussed in the next session), and the general constraints. Adhering

to these constraints, we will try to maximize the sum net utility of all the L LTEs.

Max
L

∑
i=1

Ui(β1,β2, . . .βL) (3.2)

subject to: Wi-Fi constraints

LTE constraints

βi j ≥ 0 ∀ i,j

3.3 Constraints

3.3.1 Wi-Fi Constraints

The main objective of the optimization framework is to solve for the β matrix which

is of the dimensions L ×C while maximizing the sum utilities. But the optimization

has to be done under some constraints. All LTE BS’s which will be using a particular

channel shouldn’t use all the available air time because the AP which will be present in

that particular channel will not be using any air time in that channel. Let us consider a

simple example and understand the motivation behind the Wi-Fi constraints.
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Figure 3.2: Wi-fi Deployment

Let us assume a network consisting of 2 Wi-Fi AP’s and 3 LTE BS’s as shown in the

above figure 3.2. Since we are maximizing the utility of LTE, we will stand at the each

of the LTE and try to look at the constraints. It is straight forward that each of the LTE

should not consume the whole channel since there should be some time to be reserved for

WiFi. But wait! Let’s make the things more interesting. Instead of looking the problem

in LTE’s point of view, stand at each of the Wi-Fi and think what the constraints might

be. Each of the WiFi should make sure that all the LTE’s using that AP’s channel, the

air-times of all of those combined should not be more than 1. So, for each of the Wi-Fi

AP’s, look at the LTE BS’s which can be connected to this particular AP, find the Wi-Fi

channel of that AP and the sum of all those LTE’s air-times while using this particular

channel should be less than or equal to one. Let us consider a simple example. Let Wi-Fi

number 2 is using channel 1. Let LTE BS numbers 1,3,5 are connected to this Wi-Fi 2.

Then β11 + β31 + β51 ≤ 1 will be the Wi-Fi constraints

12



3.3.2 LTE Constraints

The LTE constraints are a little involved than the Wi-Fi constraints. Before even moving

into the LTE constraints let us consider a simple case and examine it so that we can get

an idea on what constraints to impose. Let us consider a network with 3 LTE BS’s and

only one channel(say channel 1) available and let us assume they are connected as shown

in the below figure 3.3.

Figure 3.3: LTE deployment

LTE 2 is connected with both 1 and 3 where as LTE1 and LTE3 are not connected. Now

let us write the general constraints which we call them “connectivity constraints” where

for each LTE find all the LTE BS’s which are in its vicinity and the sum of all of them

should be less than or equal to one. In the above case, there will be 3 connectivity

constraints 3.3,3.4,3.5 one for each LTE.

β11 +β21 ≤ 1 (3.3)

β11 +β21 +β31 ≤ 1 (3.4)

β21 +β31 ≤ 1 (3.5)
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Solving for the optimum value gives all the β11,β21,β31 = 1/3 which means, given 1-unit

amount of time, LTE 1 will transmit one third amount of time, LTE 2 will transmit

another one third amount of time and the same with the LTE 3. Although this solution

seems to be optimal it is not! If we have a clear look into the problem, LTE 1 and LTE

3 are not connected which means if we give first half amount of time to LTE 1 and the

later half to LTE 2, then LTE 3 can also use the first half amount of time since LTE 1

is far from LTE 3 and hence no interference. So, giving 0.5 amount of time to each of

the LTE’s to transmit is the optimum solution. Since this is global problem, we call this

the “the optimal with clique constraints”. But how do we arrive at this solution for a

general problem? This problem seems to be complex right, except its not! Yes, lets find

all the maximal cliques for the above problem. But what is a clique? A clique is a subset

of vertices of an undirected graph such that every two distinct vertices in the clique are

adjacent. Simply a complete subgraph in an undirected graph is a clique. LTE 1 and 2

form a maximal clique of size 2, and similarly, LTE 2 and 3 form a maximal clique of

size 2. Writing the constraints for the cliques we get equations 3.6 and 3.7, i.e.

β11 +β21 ≤ 1 (3.6)

β21 +β31 ≤ 1 (3.7)

There are only 2 cliques in the above problem. Finding the optimal value considering

the above two constraints gives us the solution β11,β21,β31 = 1/2, which is the same

solution as the optimum one. So, we have two solutions one, the solution obtained by

following the “connectivity constraints” which we call “the optimal with connectivity

constraints” i.e. sum of all LTE’s connected to it should be less than one, and the other

is the global optimal which is obtained by implementing the clique constraints. But

wait how do we find the all the cliques in a network in the first place? We should keep

in mind that finding all the cliques in a graph is an NP-complete problem, i.e. there is

no polynomial time algorithm to find all the cliques. So, if the number of LTE BS’s

increases, the running time increases exponentially. However, there are some algorithms

which perform way better than the brute force methods to find all the cliques in a graph.

The one which we followed is Bron–Kerbosch algorithm (refer bron kerbosch (2019))

which uses recursive backtracking to find all the maximal cliques in a graph.
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In order to find all the clique constraints for our problem, consider the network with

only all the LTE BS’s present removing all the Wi-Fi AP’s. We took the base code from

Jeffrey Wildman (2011), and modified it to find all the cliques present in the network

using the Bron–Kerbosch algorithm. For each of the clique, multiply with the βL∗C

matrix and every element in the matrix should be less than or equal to one since the LTE

BS which form a clique can use any of the channel based on the Wi-Fi it is connected to.

Incorporating both the Wi-Fi and LTE constraints the sum utility maximization problem

becomes as equation 3.8.

Max
L

∑
i=1

Ui(β1,β2, . . .βL) (3.8)

subject to : ∑
L
l=1 βl,channels(w) ≤ 1 ∀ w = 1,2, ..W

cliques′ × βl,channels(w) ≤ 1

βi j ≥ 0 ∀ i,j

3.4 Utility Functions

3.4.1 LTE Utility Functions

The utility functions for user i are assumed to be log utility functions as shown in 3.9

ui = log(1+ rateL(i)×
C

∑
j=1

βi, j f ori = 1,2, . . .L (3.9)

and rateL(i) is the rate vector which is predetermined based on the deployment of the

network and is constant. Determining the rate vectors will be discussed later in this

chapter briefly. The constraint that each air time allocated should be greater than 0 is

straight forward since all the air times allocated for any of the LTE or Wi-Fi should be

greater than or equal to zero. The +1 in the utility function is to ensure that the utility is

always greater than 0.
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3.4.2 Wi-Fi Utility Functions

The costs for the Wi-Fi are taken as quadratic costs as shown in the equation 3.10:

c j = (
L

∑
i=1

βad jmat(i, j)==1,channels( j))
2 (3.10)

Also, in other way as the LTE BS’s, Wi-Fi AP’s can also have log utility functions

which we can maximize along with the LTE utility. But the air time for the Wi-Fi should

be the sum of all the air-times of all the LTE’s using that particular channel, subtracted

from 1. Equation 3.11 can be used as the costs for the Wi-Fi AP.

c j = log(1+ rateW ( j)× (1−
L

∑
i=1

βad jmat(i, j)==1,channels( j)) (3.11)

where, rateW is a predetermined constant vector based on the network deployment and

will be discussed later in this chapter.

3.5 Game Theoretic Framework

Consider a generic real time situation where different LTE base stations belong to

different service providers. Every service provider wants to maximize his own profit

i.e. maximizing his own utility. So, they end up playing a game. Understating how

the players make their strategies if they are rational(non-cooperative) or if they are

cooperative is important because it gives us an intuitive feel for the optimization problem

i.e. what will be the utility for the players if the players are rational. To know how the

players will play the strategies and how the game comes to an equilibrium, game theory

provides us with Nash Equilibrium which gives a better insight into the game. Nash

equilibrium is defined as a stable state in which each player has chosen a strategy, and no

player can benefit by changing strategies while the other players keep theirs unchanged,

i.e. no participant can gain by a unilateral change of strategy if the strategies of the

others remain unchanged.
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3.5.1 Objective

To find the Nash equilibrium, if exists, so that we can suggest the LTE base stations

whether to be rational or should they try to cope up with each other for benefit of all the

players.

3.5.2 Nash Equilibrium Solution

To find the Nash equilibrium solution, we have to fix the strategies of all the other

players(here the LTE BS’s) and we see whether a player will be benefited if he tries to

deviate. So, we will start with some initial random air times for β 0
l = (β 0

l1,β
0
l2, . . .β

0
lC)

which satisfies the constraints, i.e. the air times are feasible and iteratively solve for

convergence until the payoff while the player deviating is not more than some ε where

ε ≥ 0 and ε � 1 i.e we took,ε = 1e−3 . Instead of solving for all the L LTE’s at once,

we have solved for each of the LTE simultaneously and updated the new β (k+1) every

time since the solution of the complete β matrix will be feasible according to constraints

we imposed.

For finding β
k+1
l from β k

1 ,β
k
2 , . . .β

k
L ,we have to maximize the utility of the lth LTE

varying the decision for lth LTE and keeping all the other LTE’s decisions fixed. But

we need to again remember to impose the constraints while maximizing the net utility.

Similar to the optimization problem, we have both LTE and Wi-Fi constraints. Hence

the game theory problem should solve the below equation 3.12, i.e.

Maximize : Ul(βl,β
k
−l) (3.12)

subject to: wifi constraints

clique constraints

βi j ≥ 0 ∀ i, j

where β k
−l is the decision of all other LTE’s except the lth LTE.
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3.6 Constraints

3.6.1 Wi-Fi constraints

Totally, there will be W Wi-Fi constraints. The constraints are similar to the global

optimum Wi-Fi constraints except, all the β matrix is not variable. In the β matrix,

we will plug in all the values from the previous iteration and making the whole row of

the matrix of the LTE l for which we are trying to find the optimum utility, variable,

fixing all the other utilities. We did this by performing a dot product between the new

obtained matrix and the adjacency matrix of the LTE and Wi-Fi. Now in these W Wi-Fi

constraints, we will consider only those constraints for which the LTE l is connected to.

3.6.2 LTE clique constraints

Similar to the clique constraints we have in the global optimum problem, we will have

the constraints here also, except the problem here becomes a bit easy. Instead of looking

at all the cliques, we are done if we have the cliques to which the particular LTE belongs

to. The new matrix which is obtained by plugging in all the values from the previous

iteration and remove the whole row of the matrix of the LTE l will be present here

too. For each of the cliques, we will have to make sure that the sum of the air times of

the L LTE’s(which forms a cliques) including the lth LTE’s airtime which is the only

variable every iteration, on all the channels should be less than or equal to one. These

clique constraints are the optimal constraints. So, the problem is termed as “game theory

optimal with clique constraints”. But since computing cliques when we move to a heavily

deployed network becomes very hard, we can also impose the connectivity constraints

here too which we imposed in the global problem and we can term the problem as “game

theory sub optimal with connectivity constraints”. The constraints in the game theory sub

optimal are instead of finding the cliques and then multiplying them with all the channels

in the β matrix, we do the same with the first neighbors of the lth LTE. Remember that

for any LTE, there will be only one connectivity constraints.
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For finding β
k+1
l f romβ k

1 ,β
k
2 , . . .β

k
L ,

Maximize : Ul(βl,β
k
−l) (3.13)

subject to: ad jmat. tempk
i=1:L except l

required_cliques′×β k
i=1:L except l

βi j ≥ 0 ∀ i, j

where adjmat is the adjacency matrix between LTE network and Wi-Fi network, temp

is a L×W matrix obtained by keeping in each of the Wi-Fi column, the corresponding

betas according to the assigned channel to which this LTE belongs to except for the lth

LTE where we replace the entire row by the variables we are solving .Required cliques

is the clique matrix consisting of the cliques LTE l belongs to.

NOTE: We have solved for each of the LTE simultaneously and updated the new β k+1

every time since the solution of the complete β matrix will be feasible according to

constraints we imposed.

NOTE: Stop the iterations when the payoffs of all the players is less than ε when

deviating.

3.7 Computing rate vectors

3.7.1 Computing LTE rate vector

The rate vector for LTE "rateL" that are used in the above sections is a vector matrix

consisting of constants depending on the network deployment. Let us consider an LTE

BS at location (X,Y) in the 2D space. The rate for this LTE BS depends on the LTE users

that are present around this BS and are connected to this BS. For the implementation

case, we considered the well known "Poisson distribution" for knowing the number of

LTE users present near the LTE BS. Once the users are known, the rate for the LTE BS

is calculated according to the equation 3.14.
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rateL(l) =
N

∑
i=1

BW × log(1+(Pt(d(i)−n)× (R2))/N) (3.14)

where: BW : Bandwidth of the channel

Pt :

d(i) : distance from LTE user i to LTE BS

n : Path loss coefficient

R : exponential random variable with mean µ

N : Noise power

3.7.2 Computing Wi-Fi rate vector

The rate vector for Wi-Fi "rateW " that are used in the above sections is a vector matrix

consisting of constants depending on the network deployment. Let us consider an

Wi-Fi AP at location (X’,Y’) in the 2D space. The rate for this Wi-Fi AP depends on

the Wi-Fi users that are present around this AP and are connected to this AP. For the

implementation case, we considered the well known "Poisson distribution" for knowing

the number of Wi-Fi users present near the Wi-Fi AP. Once the users are known, the rate

for the Wi-Fi AP is calculated according to the equation 3.15.

rateW (w) =
M

∑
i=1

BW × log(1+(Pt(d(i)−n)× (R2))/N) (3.15)

where:

BW : Bandwidth of the channel

Pt : Transmitted Power

d(i) : distance from Wi-Fi user j to Wi-Fi AP

n : Path loss coefficient

R : exponential random variable with mean µ

N : Noise power
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3.8 Tools used

The tools that were used for developing the model are:
1. Matlab : All the codes for this project are written in Matlab
2. CVX : For solving the optimization problem, CVX matlab tool is used. CVX is a

Matlab-based modeling system for convex optimization.
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CHAPTER 4

Q-learning

4.1 Motivation and Objective

We have discussed the optimization and game theoretic frameworks in chapter 3.Our

model proposes an optimal air time for transmission of LTE and WiFi. Since solving

the optimization problem in real time in a really big network consisting of hundreds

of nodes may take a huge time which is not realisable, using of machine learning

techniques for such a scenario may boost the running time and even the performance

of the model.Coming to our problem i.e. estimating the optimal duty cycle time, we do

not have the data set or ground truth to perform any supervised learning or unsupervised

learning. Also, the ground truth concept in our case does not make any sense since there

is no particular optimal solution for any given network with any load. If they’ve been

there, we would formulate a simple supervised learning problem and train a network

that would learn the model. So, our objective is to get this air time β (now on-wards

duty cycle time) though any learning technique which does not require ground truth and

data sets. In this chapter we discuss one such model known as Q-learning, a model free

reinforcement learning approach. We first develop a system model and then propose a

learning problem and apply the Q-learning algorithm.

4.2 Introduction to Reinforcement learning

In this section we will introduce you to Q-learning, which is a part of Reinforcement

Learning and then explain in detail what is the role of Q-learning in our problem state-

ment. But, what is reinforcement learning in its first place?Machine learning is broadly

divided into 3 classes, Supervised learning, Unsupervised learning and Reinforcement

learning. Reinforcement Learning is one of the aspect of Machine learning in which an

agent learns to behave in an environment, by performing certain actions by observing

the rewards which it get from those actions. Reinforcement Learning is learning what



action to take in certain situation so that the agent can maximize its numerical reward. A

typical block of reinforcement learning is shown in figure 4.1

4.2.1 Elements of Reinforcement learning

1. Agent : Our player which needs to take actions
2. state : The different places in which an agent can possibly be
3. Action : The decision which the agent takes at a state
4. Policy : mapping from perceived states of the environment to actions
5. Rewards : After each action, the environment sends to the agent a single number

called reward, where the objective is to maximize this reward
6. Value Function : the value of a state is the total amount of reward an agent can

expect to accumulate over the future, starting from that state

Figure 4.1: Reinforcement learning

A simple example could be a bot trying to learn how to play table tennis. We define

the bot with predefined actions say forward,back hand, smash, cut. Initially the bot don’t

know what action to take. So, its picks up random actions. If that action is good for the

corresponding state in the environment, we reward the bot with a positive value, where

as if it is bad, we reward a negative value. Now the agent will learn that at the present

state, if it took an action A, it gets a reward R. So, we train the network for a very long

amount of time so that the agent learns the whole environment.
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4.3 System Model

In this section we provide a simple system model for applying Q-learning based approach

to determine the optimal duty cycle time. Let us consider a network consisting of only 1

channel along with 1 LTE BS and 1 Wi-Fi AP. Users may arrive at the LTE BS or Wi-Fi

AP depending on their arrival rates. We formulate the system model by proposing a

Markov Decision Process where the states, actions are derived using M/M/1 queue model.

Markov Decision Process (MDP) is a mathematical framework commonly applied for

modeling decision making problems in random situations.

4.3.1 M/M1/Queue

Figure 4.2: M/M/1 queue

M/M/1 queue represents the queue length in a system having a single server, where

arrivals are determined by a Poisson process and job service times have an exponential

distribution. The above fig 4.2 represents a M/M/1 queue. M/M/1 queue serves as the

basic model in queuing theory. The features of an M/M/1 queue are depicted in the

below table 4.1

Table 4.1: Table with features of M/M/1 queue

Agent which gives the optimal solution
state a tuple of length of both the queues along with an action
Action Duty cycle time (say 0.3 or 0.5 of whole time)
Rewards function which is a linear combination of the both the queue lengths
Environment The time line from t=0 to T
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4.4 Q-learning

In Q-learning, the agent, at each discrete time step t, takes one action among a predefined

set of actions β , i.e the fractional duty cycle time based on the observation of its current

states t and the reward rt provided by the environment. Given the current states t the

future state t +1 is independent of the past. Both the transition from st to st+1 and the

reward,rt+1, are determined as a consequence of the action selected and the previous

state. The transition probability from one state st to st+1 depends on the current state

and the action and is given by the equation 4.1:

p(s′,r|s,a) = Pr(st+1 = s′,rt+1 = r|st = s,at = a) (4.1)

where a represents the action taken by the agent to move from the state s to the state

s′, yielding a reward r. One most common way to solve an MDP is by using the

famous Bellman equation. According to Bellman, an optimal policy has the property

that whatever the initial state and initial decision are, the remaining decisions must

constitute an optimal policy with regard to the state resulting from the first decision.

Interestingly to solve an MDP completely, Bellman equation requires the knowledge

of availability of an explicit model completely which includes knowing all the possible

state transition probabilities. But, practically, knowing all the transition probabilities is

very difficult. Hence to overcome this issue, we use Q-learning which does not require

an explicit model to solve the MDP. In other words, it is not required to know the state

transition probabilities. The Q-Learning algorithm is based on a Q function that is

updated whenever it receives a reward from a state transition after the agent takes

a certain action. Say the agent is at time step t, the function Qt is updated at the next

decision making time i.e.end of a frame, when a reward r is observed while the agent is

transitioning from state st to st+1. The update equation for the Q matrix is given by the

equation 4.2:

Qt+1(st ,at)← (1−α) Qt+1(st ,at)+α (r+ γ max
a∈β

Qt(st+1,a)) (4.2)
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where α and γ are the learning rate and the discount factor respectively. In Q-learning or

to keep it more simple, in any reinforcement learning problem, one of the challenges

that arise is the trade-off between exploration and exploitation. Exploitation means

we move greedily, selecting the move that leads to the state with the greatest value

where as exploration is occasionally selecting random moves from the other actions.

Exploration is very necessary and its importance can be seen by a simple example. Let

us consider a man searching for treasure in two boxes. Let box1 gives one gold coin

with 0.9 probability and box2 gives 1000 gold coins but with only 0.1 probability. If the

man continue exploiting the box1 he will never know the hidden treasure under box2.

Instead what he should do is randomly explore the other possibilities so that he could get

a better future reward. Any reinforcement model will both exploit and explore if it is

really well trained. Since in the equation 4.2, we took care of the exploration part, our

model can suugest the optimal duty cycle time, if well trained. Aslo, since the agent

is capable to learn upon experience by exploring and exploiting, Q-Learning is highly

suited for solving Markov decision problems without explicit knowledge of the transition

probabilities.

For the Q-learning based coexistence algorithm, Boltzmann algorithm is used as the

action policy of the agent selection. The Boltzmann algorithm is a common algorithm

for balancing the accumulation of exploiting and exploring. The algorithm calculates

the probability of different actions according to formula 4.3, and then select the action

according to the probability

Pa|s =
e

Q(s,a)
T

∑a∈A e
Q(s,a′)

T

(4.3)

where Pa|s is the probability that the agent will select action a in the state s, and T is

the temperature value. We reduce the T value by equation 4.4, to reduce the number of

explorations of the optimal policy of the agent,

T =
T0

log(1+N)
(4.4)
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where T0 is the initial temperature value, and N is the number of times that the action is

selected by the agent. After calculating the probabilities of all the actions, one can pick

an action based on cumulative probability graph. One more method to pick a particular

action without the equations 4.3 and 4.4 is by choosing a random number and comparing

it with the exploration constant(ε). We’ve implemented both methods.

So, by formulating the duty cycle problem into a Markov Decision Process consider-

ing the M/M/1 queue into account, we have developed our model. The remaining part of

this section describes the scenario of our problem.

4.4.1 Describing the system model

Both the LTE BS and the Wi-Fi AP uses separate M/M/1 queue for its users arrival and

service. Users will arrive at each of the queue according to a Poisson distribution along

with their individual exponential service times. The following table 4.2 describes the

elements of Q-learning in our problem.

Table 4.2: Table with elements of Q-learning

Property Feature
Calling Population An infinite population with independent arrivals and not influenced by

the queuing system
Arrival Process Poisson distribution of arrival rate
Queuing configuration Single waiting line with unlimited space
Queue discipline First come, First serve
Service Process Exponential service time distribution

Figure 4.3: LTE queue
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Figure 4.4: Wi-Fi queue

Let us consider that LTE users arrive at rate λL with service times following the exponen-

tial distribution with mean µL as shown in the figure 4.3. Also, let Wi-Fi users arrive at

rate λW with service times following the exponential distribution with mean µW . Let us

consider at any point of time the lengths of the queue in LTE queue is N and in the Wi-Fi

queue is M as shown in the figure 4.4. So at any point the tuple (Nk,Mk) represents the

queue lengths at frame time k. The agents, states, actions for the Q learning problem are

defined as follows.

4.4.2 Objective

The objective is straight forward,i.e to minimize the queue lengths in both the queues.

To put it more precisely,we want tp minimize the sum of the both the queue lengths. In

other words, the system should serve as many LTE users and Wi-Fi users in such a way

that the queue lengths of both the queues will be minimum. Since our aim is to make the

queue lengths as minium as possible, equation 4.2 changes to the following equation 4.5

Qt+1(st ,at)← (1−α) Qt+1(st ,at)+α (r+ γ min
a∈β

Qt(st+1,a)) (4.5)

4.4.3 Events Description

Let us now put down all the events that may happen in a timeline so that we can decide

what to do in each event.
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1. flag: flag bit is a binary output i.e. flag = 1 means LTE time so all the users that
are present in the LTE queue can be served by first come first serve basis and flag
= 0 means Wi-Fi time, so the Wi-Fi users that has the minimum contention time
and is present in the Wi-Fi queue gets the service and the process repeats. Note
that Wi-Fi uses contention mechanism before allocating its uses to service.

2. LTE User generation: This event means an LTE user has arrived at a point in
the time line. Once this event occurs, we will generate another random variable
indicating the occurrence of next LTE user generation

3. Wi-Fi User generation: This event means an Wi-Fi user has arrived at a point in
the time line. Once this event occurs, we will generate another random variable
indicating the occurrence of next Wi-Fi user generation

4. LTE service time: This event describes that an LTE user has completed its service
in the LTE time, so we have to remove this user from the queue.

5. Wi-Fi service time: This event describes that an Wi-Fi user has completed its
service in the Wi-Fi time, so we have to remove this user from the queue.

6. Duty cycle time: This event says that the duty cycle for LTE is completed and
Wi-Fi can use the channel for transmissions

7. Contention time: the contention time is the minimum of all the counters of the
Wi-Fi users that are present in the queue. If this event occurs that means, some
Wi-Fi user has completed its contention time so, we have to start serving the Wi-Fi
user from then.

8. Frame time: If this event occurs, that implies that the frame time got completed
and the agent has to take an action now for the next frame based on the current
state, i.e the length of the queues and the previous action.

Algorithm 2: Q-learning algorithm
Data: λL,λW ,µL,µW ,β = (0.1,0.2, ..0.9)
Result: actions,i.e duty cycle times at every completion of frame

1 Initialization:
2 initialise all the necessary parameters to the required values including zeros for the

Q matrix and choosing a random action
3 Compute the initial state st
4 Calculate the probability values of agent u in the unlicensed channel m with the

different action β j in the state st
5 According to the equation and the equation , perform the action with the maximum

probability in current state, if there are multiple identical probabilities, then
randomly select one;

6 Perform action β j, get the corresponding environmental reward value rt , then enter
the next state st+1 from st

7 Update the corresponding action Q value of the agent
8 t ← t +1 jump to step 3 in the learning phase
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4.4.4 Q-learning models

Once the objective is clear, we developed the model in 2 phases
1. Optimal learning phase
2. Optimal implementation phase

During the learning phase the agents learns what actions to take when the agent is in a

particular state by the well known strategies of exploration and exploitation. A detailed

algorithm [Algorithm 4] of the learning phase is given in the appendix chapter 2 and 3.

Once the network is trained, the implementation phase can be started with the Q matrix

obtained from the training phase.

NOTE: Queue and Q are two different things completely. Queue is present and intro-

duced in the system model itself which uses first in first out way, where as Q is the name

of the algorithm in which Q table is updated through time while learning.
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CHAPTER 5

Results and Discussions

In this chapter we first provide the simulation results obtained along with the set up and

assumptions required for the optimization and Game theoretic frameworks. Then we set

up the agent in the Q-learning, trained it using the Q update method and reported the

results of the network by comparing the optimal actions taken by our agent with some

naive approaches.

5.1 Optimization and Game theory results

5.1.1 Simulation Set up

The following are the valid assumptions we took for setting up the experiment. We

considered the utilities of the LTE to be :

ui = log(1+ rateL(i)×
C

∑
j=1

βi, j f or i = 1,2, . . .L (5.1)

And the cost due to the presence of Wi-Fi, in other words, the utilities for the Wi-Fi are

c j = log(1+ rateW ( j)× (1−
L

∑
i=1

βad jmat(i, j)==1,channels( j) (5.2)

where, rateL and rateW are the constant vectors determined based on the LTE user’s

deployment. The rate vectors rateL and rateW are calculated by the process explained in

section 3.7.1 and 3.7.2. The constants required are taken as:

BW : Bandwidth of the channel = 20

Pt : Transmitted Power

d(i) : distance from LTE user i to LTE BS

n : Path loss coefficient = 2.5

R : exponential random variable with mean µ = 10



N : Noise power = 1

M : no of users with Poisson distribution with mean = 20/104

We then considered a random network deployment as shown in the figure (Fig 5.1) where

there are 7 LTE BS’s and 7 Wi-Fi AP’s, and solved for the following 4 problems:

i Optimal with clique constraints
ii Optimal with connectivity constraints

iii Game theory with clique constraints
iv Game theory with connectivity constraints

Figure 5.1: sample deployment of 7 LTE’s and 7 Wi-Fi AP’s

The square indicates that it is a Wi-Fi AP where as the “+” indicated that it is an LTE.

All the four optimum problems are solved, and the results are depicted in the table 5.1

below.
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5.1.2 Results

NOTE: All the codes are written in matlab and we ran them in "Dell latitude 3490 PC".

Table 5.1: Table with the maximum sum utilities for the deployment for the 4 sub
problems

Problem Max Sum Utility
Optimal with clique constraints 7.7552

Optimal with connectivity constraints 7.6903
Game theory with clique constraints 6.0274

Game theory with connectivity constraints 5.8117

5.1.3 Observations

One observation is that the order of the magnitude of the max sum utilities. The optimal

with clique constraints has the highest sum utility since we imposed better constraints,

i.e. the clique constraints. Next in the order comes the optimal with the connectivity

constraints, because the connectivity constraints are heavy constraints which are not

necessary but easy to compute. The search space for the optimum value becomes less

in this case when compared to the clique constraints. Both the game theory solutions

yielded a lesser sum utility than the global optimum because, of the players being rational

trying to maximize their own utility, instead ended up getting lesser utilities. Even though

social optimum suggests that cooperation will lead to a better result for all of them, they

don’t care much about other player’s utilities. Game theory with clique constraints yield

a better solution than the game theory with connectivity constraints because of the same

reason mentioned above. Bigger search space is available for the clique constraints than

the connectivity constraints.

While solving the Nash Equilibrium solution in the optimization framework, we

obtained the solution using ε Nash Equilibrium, there will be some loss in net utility

because obtaining the exact solution might take a long amount of time resulting in a

unrealizable implementation. If this loss is not tolerable, that indicates that players

must cooperate in order to achieve better utility rates for all of them. But if the loss

variation is not too high, then we can suggest the players that they can play their own
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strategies without any cooperation which would be more realistic to the real-world

service providers. One method which gives a measure to characterize the loss is by

calculating the “Price of Anarchy(POA)”. The Price of Anarchy is defined as the ratio

between the optimal solution and the Nash equilibrium. Generally, POA ≥ 1. For the

deployment we considered in figure 5.1, considering 7 LTE and 7 Wi-Fi, calculating

POA gives POA = 1.2866. If POA is� then players must cooperate. If POA is near to

1, if that is tolerable, players can be rational.

To infer how the sum utilities vary, if the number of LTE’s vary keeping the Wi-Fi

AP’s constant, we fixed the above deployment as shown in figure 5.1 and varied the LTE

BS’s from 7 down to 1 LTE(removing 1 LTE each time while keeping the other network

constant) and calculated the sum utilities for all the 4 problems. The results are noted

and a bar graph 5.2 corresponding to the values is reported below.

Figure 5.2: comparison of optimal vs game theoretic solutions
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We can see that the order always follows, i.e. optimum with clique > optimum with

connectivity > game theory with clique > game theory with connectivity. If the number

of LTE is only 1, an interesting thing happens. All the 4 problems solution is same. It is

because, since there is only 1 LTE, deployed in a game theoretic perspective, there are

no other players to play, so the LTE will end up maximizing its own utility which is the

same case in the both the optimal problems. One more observation is that, sometimes

both the optimal problems solution’s may be equal, it is because, the clique constraints

and the connectivity constraints are same. If U∗ is the optimal solution, and U− is the

solution in game theory, then, U− ≤U∗

5.2 Q-learning results

5.2.1 Simulation Set up

The following are the assumptions made during the training and testing phase of the

Q-learning. We considered that only a single channel is available for LTE and Wi-Fi to

transmit their data. Once the observations and results are well in place we go to more

number of channels which seems more appealing. LTE users and Wi-Fi users arrive at

rates λL and λW with their arrival rates as µL and µW . Here are some constants:

During learning phase:

λL = 1

λW = 1

µL = 10

µW = 10

β = {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9} // set of actions

ε = 0.2 // exploration constant

gamma = 0.9 // discount factor

time = 1000000; // training time

frame_time = 2; // frame time

contention_const = 0.1; // Wi-Fi user chooses a counter time for contention from 0 to 0.1

λ = 1 //weighing constant for N,M
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α = 0.9 // learning rate

During implementation phase:

All the constant remain the same except the exploration constant ε which we set it to 0

in testing phase

ε = 0 // exploration constant

5.2.2 Results

NOTE: All the codes are written in matlab and we ran them in "Dell latitude 3490 PC".

Based on the constants mentioned above, we trained the agent. Then we tested it for

time = 100000. We found out the cost of the network at each frame by the equation 5.3.

costk = costk−1 +(Nk +λ Mk)× γ
k−1 (5.3)

where Nk and k are the queue lengths at frame time k

We observed that the cost function as frame time increases starts saturating. For the

performance analysis, we compared our trained model with 2 other naive models. They

are:
1. Picking a random action every time from the set of all actions
2. Picking a constant action every time irrespective of all actions

We picked 0.5 time of the frame time as constant action every time and we computed the

cost functions for the 3 models. The plot is depicted in figure 5.3
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Figure 5.3: comparison of costs for optimal action, random action, constant action

5.2.3 Observations

We can observe that the optimal cost curve is the minimum among the three model,i.e.

our network has learned and able to adapt dynamically the duty cycle time based on the

queue lengths of the LTE and Wi-Fi. But one more interesting observation is during the

training phase. The cost curve during the training phase(the curve that has the highest

values) is higher than the costs of the other 2,i.e. the random action cost and the constant

action cost. That means our network is performing really poor while learning phase.

But in implementation, the model outperforms the other two models. Also, one more

observation is that choosing a constant action here 0.5 time of frame time gives low cost

than choosing a random action every time. This do really make sense because we are

allocating equal amount of time for LTE and Wi-Fi when both the user generation and

service times follow the same distribution.

To see how the network adapts by varying various parameters, we varied γ , and

looked at the average costs for the optimal solution, random action solution and constant

action solution. The plot for the same is shown in the figure 5.4
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Figure 5.4: comparison of average cost for optimal action, random action, constant
action while varying γ

We can see that the average cost for the optimal solution is less than the solution

obtained by picking a random action and a constant action. This implies that our model

is performing better than the rest of them irrespective of the value of γ . As already

mentioned, picking a constant action of 0.5 will do better than picking a random action,

we can observe the same in the below plot 5.4.
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CHAPTER 6

Summary

6.1 Conclusions

In this chapter we conclude our work by providing a short summary of the work we

have done in this project. We started with the problem of fair co-existence of LTE-U and

Wi-Fi in to the interference problem incurred by LTE when used in the unlicensed bands.

So, to overcome this issue, we proposed a novel method in which we divided the total

time into two 2 parts and allocating each of the time to LTE and Wi-Fi respectively by

taking the concept of Almost Blank Sub Frames (ABSF) into account. A system model

was developed taking into consideration a real time scenario and the cost functions were

formed. Then we formed the optimization problem, and solved for the optimal solution.

The solutions and results are reported in chapter 5.

In addition to solving the optimization problem, we also formed a Game theoretic

framework for the same problem, and solved for the Nash Equilibrium solution. The Nash

equilibrium solution may not be the optimal solution but it is a more realistic solution

since the players (here the LTE BS’s) might not cooperate for social optimal solution

by being greedy. While solving the Nash Equilibrium solution in the optimization

framework, as mentioned in chapter 3, we obtained the solution using ε Nash Equilibrium,

there will be some loss in net utility because obtaining the exact solution might take a

long amount of time resulting in a unrealizable implementation.

Since calculating the optimal solution(estimating the fractional air time) in a very

dense deployment can take a long time and with the advancements of machine learning

technologies now a days, we presented a simple model which uses Q-learning, a model

free reinforcement learning which does not need an explicit model to know the transition

probabilities. We made use of the concept of M/M/1 queue for building the Markov

Decision Process problem since any reinforcement learning problem can be modelled to

an MDP. We trained our model initially updating the Q matrix, then tested the model

with the final Q matrix by comparing with 2 other naive models.



6.2 Future Work

Regarding the System model, working on improving the model to a more realistic way

such as including small cell base stations, etc would be of a great use because the whole

performance of the model whether it is doing good or really bad depends solely on

the problem of how we frame the system model. So improving these parts would be a

nice start for a future work. Also, while performing the optimization, checking whether

any new and better constraints can be imposed on the model to improve the system

performance is one more interesting work to start with.

Also, presently, our model just gives the optimal fraction of air time for LTE and

Wi-Fi, but even after getting the optimal air times, the way we schedule the air times

would have a significant role in the system performance. So, scheduling the obtained air

times is one major future scope to work.

In the Q learning part, present we have considered and incorporated only one channel.

Since the results regarding the Q-learning are promising and satisfactorily, extending this

model to more number of channel which would be more appealing could be considered

as a work for future scope.

In our Q-learning model, we presently fixed the frame time to a constant, and then

worked on the optimal air times for that particular frame time. But can we do something

better? Can our model also learn the optimal frame time and provide it in the solution

along with the fractional air time(duty cycle time)? This too would be an interesting as

well as an important thing to work with.
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APPENDIX A

Bron-kerbosch algorithm

Bron kerbosch algorithm is an optimized algorithm used for finding all the maximal

cliques in a graph.

A clique in an undirected graph G = (V,E) can be defined as a subset of the vertex set

C ⊂V such that for every two vertices in C, there exists am edge connecting the two.

A maximum clique can be defined as the clique of the largest possible size in a graph

A maximal clique can be defined as the clique that cannot be extended by adding one

more adjacent vertex.

Following are the sets involved and their functions while computing the cliques using

the Bron-kerbosch algorithm.

R: set of vertices that construct the Maximal Clique

P: set of adjacent vertices to every vertex currently in R, it is possible that the vertices in

P may be selected to set R for forming a maximal clique

X: set of vertices can not construct Maximal Clique since they are already in some clique

Below is pseudo code for the Bron-kerbosch algorithm with pivot (version 2)

Pseudocode 3: Bron-kerbosch algorithm for maximal cliques
1 Initialization:R= {},P={V},X={}
2 Function BronKerbosch(P,R,X)
3 if P ∪ X == {} then
4 return R as maximal clique

5 choose pivot vertex u in P ∪ X
6 for each vertex v in P \ neighbors(u) do
7 BronKerbosch(P ∩ neighbors(v),R ∪ v, X ∩ neighbors(v))
8 P← P \ v
9 X← X ∪ v



APPENDIX B

Q-learning pseudo code

The pseudo code for the learning part in the Q-learning is given below. The data, result,

and the initialisation part are given below and the algorithm can be found in the next

page.

Algorithm 4: Q-learning algorithm
Data: λL,λW ,µL,µW ,β = (0.1,0.2, ..0.9)
Result: actions,i.e duty cycle times at every completion of frame

1 Initialization:
2 N = 0; M = 0
3 Q = zeros(100,100,len(actions)) // initializing Q matrix to 0
4 action_num = zeros(100,100,len(actions)) // counting the no of times a

particular action is picked at a given state and prev action
5 eps = 0.2 //exploration constant
6 flag = 1 // setting flag=1 i.e LTE time
7 t = 0 //starting from time = 0
8 time = 100000 // setting training time
9 frame_time = 2 // setting frame time = 2

10 contention_const = 0.1 // for counter
11 lte_count = 0
12 wifi_count = 0
13 start with a random action
14 update action_num matrix
15 calculate events list



15 while t ≤ time do
16 if flag == 1 then
17 consider lte gen, wifi gen, lte service time, duty cycle time as the events

and find the min event
18 update t by adding min time
19 if index==lte gen then
20 increase lte count
21 gen new lte user
22 gen new service time if it is first LTE user
23 else if index == wifi gen then
24 increase wifi count
25 gen new wifi user
26 gen counter for new user
27 find contention time
28 else if index == lte service time then
29 decrease LTE count
30 if LTE count > 0 gen new service time for next LTE else make it infinity
31 else if index == duty cycle time then
32 make flag = 0
33 find contention time if M > 0 else make it infinity
34 else if flag ==0 then
35 consider lte gen, wifi gen, wifi service time, contention time and frame time

as events and fin min event
36 update t by adding min time
37 update events by subtracting min time
38 if index==lte gen then
39 increase lte count
40 gen new lte user
41 gen new service time if it is first LTE user
42 else if index == wifi gen then
43 increase wifi count
44 gen new wifi user
45 gen counter for new user
46 find contention time
47 else if index == wifi service time then
48 remove the wifi from counter array which has contention times
49 reduce Wi-Fi count
50 if Wifi count > 0 find new contention time and make wifi service time

infinity
51 else make contention time and wifi service time as infinity
52 else if index == contention time then
53 update counter by subtracting contention time
54 gen new wifi service time
55 make contention time infinity
56 else if index == frame time then
57 make flag = 1
58 take action based on prevN, prevM, action_num, prev_action,M,N
59 update prev_action, action_num,prevN,prevM

60
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APPENDIX C

Q-learning take action function

Pseudocode 5: Function for take action
1 Function take action(prevN,prevM,Q,N,M,action_num,prev_action,β)
2 α = 1 / action_num(prevN+1,prevM+1,prev_action)
3 γ = 0.9
4 find min value and index for Q(N+1,M+1) row
5 λ = 1
6 Qt+1(st ,at)← (1−α) Qt+1(st ,at)+α (r+ γ maxa∈β Qt(st+1,a))
7 choose a random num between 0 and 1
8 if rand() < then
9 present_action = randi(1,len(β )) // exploring

10 else
11 ,

12 β is the set of all possible actions present_action = index
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